|
|
|
Gabdullin Mikhail Rashidovich
(recent publications)
|
Articles
|
|
|
2023 |
1. |
M. R. Gabdullin, V. V. Iudelevich, F. Luca, “Numbers of the form $kf(k)$”, Int. J. Number Theory, 2023 (to appear) |
|
2022 |
2. |
Mikhail R. Gabdullin, “Trigonometric series with noninteger harmonics”, J. Math. Anal. Appl., 508:1 (2022), 125792 , 11 pp., arXiv: 2102.05698 |
3. |
Mikhail R. Gabdullin, “The Stochasticity Parameter of Quadratic Residues”, Int. Math. Res. Not. IMRN, 2022, 1–24 (Published online) , arXiv: 2010.04982 |
|
2021 |
4. |
Kevin Ford, Mikhail R. Gabdullin, “Sets whose differences avoid squares modulo $m$”, Proc. Amer. Math. Soc., 149 (2021), 3669–3682 |
|
2020 |
5. |
M. R. Gabdullin, “Lower Bounds for the Wiener Norm in $\mathbb Z_p^d$”, Math. Notes, 107:4 (2020), 574–588 |
6. |
M. R. Gabdullin, “On the stochasticity parameter of quadratic residues”, Dokl. Math., 101:2 (2020), 93–95 |
7. |
M. R. Gabdullin, S. V. Konyagin, “Stechkin’s works in number theory”, Chebyshevskii Sb., 21:4 (2020), 9–18 |
|
2018 |
8. |
M. R. Gabdullin, “Sets in $\mathbb{Z}_m$ whose difference sets avoid squares”, Sb. Math., 209:11 (2018), 1603–1610 (cited: 1) (cited: 1) |
9. |
M. R. Gabdullin, “Estimates for character sums in finite fields of order $p^2$ and $p^3$”, Proc. Steklov Inst. Math., 303 (2018), 36–49 |
|
2016 |
10. |
M. R. Gabdullin, “On squares in special sets of finite fields”, Chebyshevskii Sb., 17:2 (2016), 56–63 |
|
2017 |
11. |
M. R. Gabdullin, “On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion”, Math. Notes, 101:2 (2017), 234–249 (cited: 5) |
|
2016 |
12. |
M. R. Gabdullin, “On the Divergence of Fourier Series in the Spaces $\varphi(L)$ Containing $L$”, Math. Notes, 99:6 (2016), 861–869 |
|
2017 |
13. |
M. R. Gabdullin, “On the divergence of trigonometric Fourier series in classes $\varphi(L)$ contained in $L$”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 81–87 |
|
2012 |
14. |
M. R. Gabdullin, “An estimate of the geometric mean of the derivative of a polynomial in terms of its uniform norm on a closed interval”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 153–161 |
ArXiv
|
|
15. |
Prime avoiding numbers is a basis of order 2 , 20 pp., arXiv: 2209.03058 |
|
2021 |
16. |
M. R. Gabdullin, Trigonometric polynomials with frequencies in the set of squares and divisors in a short interval, 2021 , 8 pp., arXiv: 2205.13611 |
Miscellaneous
|
|
|
2022 |
17. |
Teoriya priblizhenii, funktsionalnyi analiz i prilozheniya, Sbornik statei. K 70-letiyu akademika Borisa Sergeevicha Kashina, Trudy MIAN, 319, ed. S. V. Konyagin, M. I. Dyachenko, V. N. Temlyakov, M. R. Gabdullin, K. S. Ryutin, MIAN, M., 2022 , 328 pp. |
|
2021 |
18. |
Analiticheskaya i kombinatornaya teoriya chisel, Sbornik statei. K 130-letiyu so dnya rozhdeniya akademika Ivana Matveevicha Vinogradova, Trudy MIAN, 314, ed. D. V. Treschev, S. V. Konyagin, V. N. Chubarikov, M. A. Korolev, M. R. Gabdullin, MIAN, M., 2021 , 346 pp. ; arXiv: 2201.09287; ; (Published online); |
|