|
|
|
Katanaev Mikhail Orionovich
(recent publications)
|
|
2022 |
1. |
M. O. Katanaev, “On spherically symmetric 't Hooft Polyakov monopoles”, Int. J. Mod. Phys. A, 37:20-21 (2022), 2243012 , 14 pp. ; |
|
2021 |
2. |
M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Proc. Steklov Inst. Math., 313 (2021), 78–98 , arXiv: 2108.07177v1 (cited: 2) (cited: 2) |
3. |
M. O. Katanaev, “Gravity with dynamical torsion”, Class. Quantum Grav., 38:1 (2021), 015014 , 10 pp. (cited: 1) (cited: 1); |
4. |
M. O. Katanaev, “On the existence of the global conformal gauge in string theory”, Eur. Phys. J. C, Part. Fields, 81 (2021), 581 , 10 pp., arXiv: 1912.08052 ; |
5. |
M. O. Katanaev, “Global conformal gauge in string theory”, Phys. Lett. B, 816 (2021), 136246 , 5 pp., arXiv: 2106.05839 (cited: 1) (cited: 1); |
6. |
Mikhail O. Katanaev, “Spin distribution for the ’t Hooft–Polyakov monopole in the geometric theory of defects”, Universe, 7:8 (2021), 256 , 7 pp. (cited: 1) (cited: 1); |
7. |
M. O. Katanaev, “Spherically symmetric 't Hooft–Polyakov monopoles”, Eur. Phys. J. C, Part. Fields, 81 (2021), 825 , 4 pp. ; |
|
2020 |
8. |
M. O. Katanaev, “Nonrelativistic Limit of the Bosonic String”, Proc. Steklov Inst. Math., 309 (2020), 183–193 |
9. |
M. O. Katanaev, “The `t Hooft–Polyakov monopole in the geometric theory of defects”, Mod. Phys. Lett. B, 34:12 (2020), 2050126 (cited: 4) (cited: 5); |
10. |
D. E. Afanasev, M. O. Katanaev, “Global properties of warped solutions in general relativity with an electromagnetic field and a cosmological constant. II”, Phys. Rev. D, 101:12 (2020), 124025 , 20 pp., arXiv: 2006.09209 (cited: 1); |
11. |
D. E. Afanasev, M. O. Katanaev, “On global properties of warped solutions in General Relativity with an electromagnetic field and a cosmological constant”, Proc. of Sci., 376 (2020), 1–14 ; |
12. |
M. O. Katanaev, B. O. Volkov, “Point disclinations in the Chern–Simons geometric theory of defects”, Mod. Phys. Lett. B, 34:1 (2020), 2150012 , 14 pp. arXiv:1908.08473v1 [math-ph] (cited: 3) (cited: 3); |
|
2019 |
13. |
M. O. Katanaev, “Gauge Parameterization of the $n$-Field”, Proc. Steklov Inst. Math., 306 (2019), 127–134 , arXiv: physics/2001.08110 (cited: 1) (cited: 1) |
14. |
D. E. Afanasev, M. O. Katanaev, “Global properties of warped solutions in general relativity with an electromagnetic field and a cosmological constant”, Phys. Rev. D, 100:2 (2019), 024052 , 16 pp., arXiv: 1904.04648 (cited: 1) |
|
2018 |
15. |
M. O. Katanaev, “Chern–Simons Action and Disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133 (cited: 5) (cited: 5) |
16. |
M. O. Katanaev, Lekts. Kursy NOC, 29, 2018, 3–364 |
17. |
M. O. Katanaev, “Description of Disclinations and Dislocations by the Chern–Simons Action for $SO(3)$-Connection”, Phys. Part. Nucl., 49:5 (2018), 890–893 (cited: 3) (cited: 3) |
|
2017 |
18. |
M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668 (cited: 8) (cited: 8) |
19. |
M. O. Katanaev, “Chern–Simons term in the geometric theory of defects”, Phys. Rev. D, 96 (2017), 84054 , 8 pp., arXiv: math-ph/1705.07888 (cited: 6) (cited: 6) |
20. |
M. O. Katanaev, “Mathematical foundations of general relativity. Part 1”, Mathematical foundations of general relativity. Part 1, Lekts. Kursy NOC, 28, Steklov Math. Institute of RAS, Moscow, 2017, 3–312 |
|
2018 |
21. |
M. O. Katanaev, “Normal coordinates in affine geometry”, Lobachevskii Journal of Mathematics, 39:3 (2018), 464–476 (cited: 2) (cited: 2) (cited: 3) |
|
2016 |
22. |
M. O. Katanaev, Geometrical methods in mathematical physics, Manuscript in Russian. Extended version of lectures delivered at the Academic Educational Center at Steklov Mathematical Institute during seven semesters, 2016 , xvi+1570 pp., arXiv: 1311.0733v3 |
23. |
M. O. Katanaev, “Rotational elastic waves in a cylindrical waveguide with wedge dislocation”, J. Phys. A, 49:8 (2016), 85202 , 8 pp., arXiv: cond-mat/1502.07935 (cited: 4) (cited: 3) |
24. |
M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 , arXiv: gr-qc/1610.05628 (cited: 20) (cited: 11) |
|
2015 |
25. |
M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 2, Lekts. Kursy NOC, 26, Steklov Math. Institute of RAS, Moscow, 2015 , 186 pp. |
26. |
M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 1, Lekts. Kursy NOC, 25, Steklov Math. Institute of RAS, Moscow, 2015 , 176 pp. |
27. |
M. O. Katanaev, “Rotational elastic waves in double wall tube”, Phys. Lett. A, 379:24–25 (2015), 1544–1548 , arXiv: 1503.01759 (cited: 3) (cited: 3) |
28. |
M. O. Katanaev, “Lorentz Invariant Vacuum Solutions in General Relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142 , arXiv: physics/1602.06331 (cited: 12) (cited: 7) |
29. |
M. O. Katanaev, “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 , 5 pp., arXiv: gr-qc/1511.00991 (cited: 1) (cited: 5) (cited: 5) |
|
2014 |
30. |
M. O. Katanaev, “Passing the Einstein–Rosen bridge”, Mod. Phys. Lett. A, 29:17 (2014), 1450090 , 7 pp., arXiv: 1310.7390 (cited: 2) (cited: 3) |
|
2013 |
31. |
M. O. Katanaev, “Point massive particle in general relativity”, Gen. Rel. Grav., 45:10 (2013), 1861–1875 , arXiv: 1207.3481 (cited: 9) (cited: 6) (cited: 11) |
|
2012 |
32. |
M. O. Katanaev, I. G. Mannanov, “Wedge dislocations, three-dimensional gravity, and the Riemann–Hilbert problem”, Phys. Part. Nucl., 43 (2012), 639–643 (cited: 1) (cited: 1) |
33. |
M. O. Katanaev, I. G. Mannanov, “Wedge dislocations and three-dimensional gravity”, p-Adic Numb. Ultramet. Anal. Appl., 4:1 (2012), 5–19 (cited: 1) |
|
2011 |
34. |
M. O. Katanaev, “Simple proof of the adiabatic theorem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1(22) (2011), 99–107 |
35. |
M. O. Katanaev, “Adiabatic theorem for finite dimensional quantum mechanical systems”, Russian Phys. J., 2011, no. 3, 342–353 , arXiv: 0909.0370 (cited: 1) (cited: 3) (cited: 3) (cited: 2) |
36. |
M. O. Katanaev, “On geometric interpretation of the Aharonov–Bohm effect”, Russian Phys. J., 54:5 (2011), 507–514 (cited: 2) (cited: 1) (cited: 1) (cited: 2) |
|
2012 |
37. |
M. O. Katanaev, “On geometric interpretation of the Berry phase”, Russian Phys. J., 54:10 (2012), 1082–1092 , arXiv: 1212.1782 (cited: 2) (cited: 1) (cited: 1) (cited: 2) |
|
2010 |
38. |
M. O. Katanaev, “Global solutions in gravity. Euclidean signature”, Fundamental interactions, eds. D. Grumiller, A. Rebhan, D. Vassilevich, World Sci. Publ., Hackensack, NJ, 2010, 249–266 , arXiv: 0808.1559 |
39. |
G. de Berredo-Peixoto, M. O. Katanaev, E. Konstantinova, I. Shapiro, “Schrodinger equation in the space with cylindrical geometric defect and possible application to multi-wall nanotubes”, Nuovo Cimento, B125 (2010), 915–931 , arXiv: 1010.2913 (cited: 2) (cited: 5) |
40. |
M. O. Katanaev, “Torsion and Burgers vector of a tube dislocation”, 10th Hellenic School and Workshops on Elementary Particle Physics and Gravity (Corfu, Greece, 8–12 Sep 2010), PoS CNCFG, 2010, 022 , 7 pp. |
|