|
|
|
Чехов Леонид Олегович
(публикации за последние годы)
|
|
2021 |
1. |
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, “Quantised Painlevé monodromy manifolds, Sklyanin and Calabi–Yau algebras”, Adv. Math., 376 (2021), 107442 , 52 pp. ; |
|
2020 |
2. |
Л. О. Чехов, “Симплектические структуры на пространствах Тейхмюллера $\mathfrak T_{g,s,n}$ и кластерные алгебры”, Современные проблемы математической и теоретической физики, Сборник статей. К 80-летию со дня рождения академика Андрея Алексеевича Славнова, Тр. МИАН, 309, МИАН, М., 2020, 99–109 (цит.: 1) ; Leonid O. Chekhov, “Symplectic Structures on Teichmüller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras”, Proc. Steklov Inst. Math., 309 (2020), 87–96 |
3. |
Л. О. Чехов, “Координаты Фенхеля–Нильсена и скобки Голдмана”, УМН, 75:5(455) (2020), 153–190 ; L. O. Chekhov, “Fenchel–Nielsen coordinates and Goldman brackets”, Russian Math. Surveys, 75:5 (2020), 929–964 |
|
2019 |
4. |
L. Chekhov, P. Norbury, “Topological recursion with hard edges”, Int. J. Math., 30:3 (2019), 1950014 , 29 pp., arXiv: 1702.08631 ; |
|
2018 |
5. |
Leonid Chekhov, Marta Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107 , arXiv: 1509.07044v4 (cited: 7) (cited: 6) |
6. |
J. Ambjørn, L. Chekhov, Y. Makeenko, “Perturbed generalized multicritical one-matrix models”, Nuclear Phys. B, 928 (2018), 1–20 |
7. |
Jan Ambjørn, Leonid O. Chekhov, “Spectral curves for hypergeometric Hurwitz numbers”, J. Geom. Phys., 132 (2018), 382–392 (cited: 3) (cited: 3) |
|
2017 |
8. |
Jorgen Ellegaard Andersen, Gaetan Borot, Leonid O. Chekhov, Nicolas Orantin, The ABCD of topological recursion, 2017 , 75 pp., arXiv: 1703.03307 |
9. |
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, Algebras of quantum monodromy data and decorated character varieties, 2017 , 22 pp., arXiv: 1705.01447 |
10. |
Л. О. Чехов, М. Маззокко, “Пуассоново однородное пространство билинейных форм с действием Пуассона–Ли”, УМН, 72:6(438) (2017), 139–190 , arXiv: 1404.0988 ; L. O. Chekhov, M. Mazzocco, “On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action”, Russian Math. Surveys, 72:6 (2017), 1109–1156 |
11. |
Leonid O. Chekhov, Marta Mazzocco, Vladimir N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691 (cited: 15) (cited: 11) |
|
2016 |
12. |
Leonid O. Chekhov, “The Harer–Zagier recursion for an irregular spectral curve”, J. Geom. Phys., 110 (2016), 30–43 , arXiv: 1512.09278 (cited: 3) (cited: 4) (cited: 4) |
|
2015 |
13. |
J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Models of discretized moduli spaces, cohomological field theories, and Gaussian means”, J. Geom. Phys., 98 (2015), 312–339 (cited: 7) (cited: 1) (cited: 4) |
14. |
Ю. Э. Андерсен, Л. О. Чехов, П. Норбари, Р. С. Пеннер, “Топологическая рекурсия для гауссовых средних и когомологические теории поля”, ТМФ, 2015 (цит.: 2) (цит.: 2) ; J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Topological recursion for Gaussian means and cohomological field theories”, Theoret. and Math. Phys., 185:3 (2015), 1685–1717 (cited: 2) (cited: 2) |
|
2014 |
15. |
L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014), 2746–2772 , arXiv: 1111.3963 (cited: 23) (cited: 26) |
16. |
Jan Ambjørn, Leonid O. Chekhov, “The matrix model for dessins d'enfants”, Ann. Inst. Henri Poincaré D, 1:3 (2014), 337–361 , arXiv: 1404.4240 (cited: 26) |
17. |
Я. Амбъйорн, Л. О. Чехов, “Матричная модель для гипергеометрических чисел Гурвица”, ТМФ, 181:3 (2014), 421–435 , arXiv: 1409.3553 (цит.: 12) (цит.: 20) ; J. Ambjørn, L. O. Chekhov, “A matrix model for hypergeometric Hurwitz numbers”, Theoret. and Math. Phys., 181:3 (2014), 1486–1498 (cited: 20) (cited: 1) (cited: 18) |
|
2013 |
18. |
L. Chekhov, B. Eynard, S. Ribault, “Seiberg-Witten equations and non-commutative spectral curves in Liouville theory”, J. Math. Phys., 54:2 (2013), 022306 , 21 pp., arXiv: 1209.3984 (cited: 8) (cited: 8) |
19. |
J. E. Andersen, L. O. Chekhov, R. C. Penner, Ch. M. Reidys, P. Sułkowski, “Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces”, Nuclear Phys. B, 866:3 (2013), 414–443 , arXiv: 1205.0658 (cited: 14) (cited: 7) (cited: 15) |
20. |
L. Chekhov, M. Mazzocco, “Poisson algebras of block-upper-triangular bilinear forms and braid group action”, Comm. Math. Phys., 322:1 (2013), 49–71 , arXiv: 1012.5251 (cited: 1) (cited: 2) (cited: 1) (cited: 2) |
21. |
L. Chekhov, M. Mazzocco, Quantum ordering for quantum geodesic functions of orbifold Riemann surfaces, 2013 , 22 pp., arXiv: 1309.3493 |
22. |
J. E. Andersen, L. O. Chekhov, R. C. Penner, Ch. M. Reidys, P. Sulkowski, “Enumeration of RNA complexes via random matrix theory”, Biochemical Society Transactions, 41:2 (2013), 652–655 (cited: 8) (cited: 3) (cited: 9) |
|
2012 |
23. |
L. Chekhov, M. Mazzocco, “Block trangular bilinear forms and braid group action”, Tropical geometry and integrable systems, A conference on Tropical Geometry and Integrable Systems (Glasgow 3–8 July 2011), Contemp. Math., 580, eds. C. Athorne, D. Maclagan, and I. Strachan, Amer. Math. Soc., Providence, RI, 2012, 85–94 (cited: 1) (cited: 2) |
24. |
L. Chekhov, M. Mazzocco, “Teichmüller spaces as degenerated symplectic leaves in Dubrovin-Ugaglia Poisson manifolds”, Phys. D, 241:23-24 (2012), 2109–2121 (cited: 1) (cited: 1) (cited: 1) |
|
2011 |
25. |
Л. О. Чехов, “$\beta$-ансамбли с логарифмическими потенциалами и фейнмановские графы”, Проблемы современной теоретической и математической физики. Калибровочные теории и суперструны, Сборник статей. К 70-летию со дня рождения академика Андрея Алексеевича Славнова, Тр. МИАН, 272, МАИК, М., 2011, 65–83 (цит.: 1) (цит.: 1) ; L. O. Chekhov, “Logarithmic potential $\beta$-ensembles and Feynman graphs”, Proc. Steklov Inst. Math., 272 (2011), 58–74 (cited: 1) (cited: 1) (cited: 1) |
26. |
Л. О. Чехов, Б. Эйнард, О. Маршал, “Топологическое разложение модели $\beta$-ансамбля и квантовая алгебраическая геометрия в рамках секторного подхода”, ТМФ, 166:2 (2011), 163–215 (цит.: 29) (цит.: 34) (цит.: 3); L. O. Chekhov, B. Eynard, O. Marchal, “Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach”, Theoret. and Math. Phys., 166:2 (2011), 141–185 (cited: 34) (cited: 21) (cited: 31) |
27. |
L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775 (cited: 9) (cited: 3) (cited: 9) |
28. |
L. Chekhov, “Chapter 29. Algebraic geometry”, The Oxford Handbook of Random Matrix Theory, Oxford Handbooks in Mathematics, eds. G. Akemann, J. Baik, and P. Di Francesco, Oxford, 2011 |
|
2010 |
29. |
V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834 |
30. |
L. Chekhov, M. Mazzocco, “Shear coordinate description of the quantized versal unfolding of a $D_4$ singularity”, J. Phys. A, 43:44 (2010), 442002 , 13 pp. (cited: 5) (cited: 1) (cited: 6) |
31. |
L. Chekhov, M. Mazzocco, Poisson algebras of block-upper-triangular bilinear forms and braid group action, 2010 , 22 pp., arXiv: 1012.5251 |
|