|
|
|
Зотов Андрей Владимирович
(публикации за последние годы)
|
1. |
И. А. Сечин, А. В. Зотов, “Квадратичные алгебры, построенные по SL(NM) эллиптическим квантовым R-матрицам”, ТМФ (в печати) |
|
2021 |
2. |
K. Atalikov, A. Zotov, “Field theory generalizations of two-body Calogero–Moser models in the form of Landau–Lifshitz equations”, J. Geom. Phys., 164 (2021), 104161 , 14 pp., arXiv: 2010.14297 ; |
3. |
A. Grekov, A. Zotov, “Characteristic determinant and Manakov triple for the double elliptic integrable system”, SciPost Phys., 10:3 (2021), 055 , 34 pp., arXiv: 2010.08077 ; |
|
2020 |
4. |
Современные проблемы математической и теоретической физики, Сборник статей. К 80-летию со дня рождения академика Андрея Алексеевича Славнова, Труды МИАН, 309, ред. А. К. Погребков, Н. А. Славнов, А. А. Белавин, А. В. Зотов, И. В. Тютин, МИАН, М., 2020 , 346 с. |
5. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical duality for Gaudin magnets with boundary”, Nuclear Phys. B, 952 (2020), 114931 , 20 pp., arXiv: 1911.11792 (cited: 1) (cited: 1); |
6. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetrization of elliptic $R$-matrices”, J. Phys. A, 53:18 (2020), 185202 , 16 pp., arXiv: 1910.05712 ; |
7. |
N. Slavnov, A. Zabrodin, A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model”, JHEP, 2020:6 (2020), 123 , 53 pp., arXiv: 2005.11224 (cited: 1) (cited: 1); |
8. |
И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67 ; I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1292–1303 , arXiv: 2011.09599 |
9. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetric Kronecker elliptic function and Yang–Baxter equations”, J. Math. Phys., 61 (2020), 103504 , 9 pp., arXiv: 1910.01814 ; |
10. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary”, J. Phys. A, 53:49 (2020), 494002 , 20 pp., arXiv: 2006.06717 ; |
|
2019 |
11. |
A. Grekov, A. Zabrodin, A. Zotov, “Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nuclear Phys. B, 939 (2019), 174–190 , arXiv: 1810.12658 (cited: 4) (cited: 4) |
12. |
Ю. Черняков, С. Харчев, А. Левин, М. Ольшанецкий, А. Зотов, “Обобщенные модели Калоджеро и Тоды”, Письма в ЖЭТФ, 109:2 (2019), 131–138 ; Yu. Chernyakov, S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Generalized Calogero and Toda models”, JETP Letters, 109:2 (2019), 136–143 |
13. |
И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190 (цит.: 2) (цит.: 1) ; I. A. Sechin, A. V. Zotov, “${\rm GL}_{NM}$ quantum dynamical $R$-matrix based on solution of the associative Yang–Baxter equation”, Russian Math. Surveys, 74:4 (2019), 767–769 , arXiv: 1905.08724 (cited: 1) (cited: 1) |
14. |
T. Krasnov, A. Zotov, “Trigonometric Integrable Tops from Solutions of Associative Yang–Baxter Equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697 , arXiv: 1812.04209 (cited: 2) (cited: 4) |
15. |
А. В. Зотов, “Релятивистские взаимодействующие интегрируемые эллиптические волчки”, ТМФ, 201:2 (2019), 173–190 (цит.: 2) (цит.: 1); A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1563–1578 , arXiv: 1910.08246 (cited: 1) (cited: 2) |
16. |
A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81 , 33 pp., arXiv: 1905.07820 (cited: 2) (cited: 4) |
17. |
M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002 , 45 pp., arXiv: 1804.02777 (cited: 3) (cited: 2) |
|
2018 |
18. |
I. Sechin, A. Zotov, “R-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7 , arXiv: 1801.08908 (cited: 7) (cited: 7) |
19. |
A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51 (2018), 315202 , 26 pp., arXiv: 1801.00245 (cited: 5) (cited: 5) |
20. |
A. V. Zabrodin, A. V. Zotov, “Self–dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nuclear Phys. B, 927 (2018), 550–565 , arXiv: 1711.01036 (cited: 4) (cited: 4) |
21. |
А. В. Зотов, “Модель Калоджеро–Мозера и $R$-матричные тождества”, ТМФ, 197:3 (2018), 417–434 (цит.: 4) (цит.: 4) ; A. V. Zotov, “Calogero–Moser model and $R$-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770 (cited: 4) (cited: 4) |
22. |
S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Quasi-compact Higgs bundles and Calogero–Sutherland systems with two types of spins”, J. Math. Phys., 59:10 (2018), 103509 , 36 pp., arXiv: 1712.08851 (cited: 4) (cited: 6) |
|
2017 |
23. |
A. Zabrodin, A. Zotov, “KZ-Calogero correspondence revisited”, J. Phys. A, 50 (2017), 205202 , 12 pp., arXiv: 1701.06074 (cited: 5) (cited: 4) |
24. |
А. В. Забродин, А. В. Зотов, А. Н. Ляшик, Д. С. Руднева, “Асимметричная шестивершинная модель и классическая система частиц Рейсенарса–Шнайдера”, ТМФ, 192:2 (2017), 235–249 (цит.: 2) (цит.: 2) ; A. V. Zabrodin, A. V. Zotov, A. N. Liashyk, D. S. Rudneva, “Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles”, Theoret. and Math. Phys., 192:2 (2017), 1141–1153 , arXiv: 1611.02497 (cited: 2) (cited: 3) |
25. |
A. Zabrodin, A. Zotov, “QKZ–Ruijsenaars correspondence revisited”, Nuclear Phys. B, 922 (2017), 113–125 , arXiv: 1704.04527 (cited: 4) (cited: 3) |
26. |
S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Calogero–Sutherland system with two types interacting spins”, Письма в ЖЭТФ, 106:3 (2017), 173–174 , arXiv: 1706.08793 (цит.: 3) (цит.: 2) (цит.: 3); JETP Letters, 106:3 (2017), 179–183 (cited: 2) (cited: 3) |
27. |
A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169 , 22 pp., arXiv: 1706.05601 (cited: 2) (cited: 5) (cited: 5) |
|
2016 |
28. |
A. Levin, M. Olshanetsky, A. Zotov, “Yang–Baxter equations with two Planck constants”, J. Phys. A: Math. Theor., 49:1 (2016), 14003 , 19 pp., Exactly Solved Models and Beyond: a special issue in honour of R. J. Baxter's 75th birthday, arXiv: 1507.02617 (cited: 8) (cited: 8) |
29. |
M. Beketov, A. Liashyk, A. Zabrodin, A. Zotov, “Trigonometric version of quantum–classical duality in integrable systems”, Nuclear Phys. B, 903 (2016), 150–163 , arXiv: 1510.07509 (cited: 13) (cited: 12) |
30. |
Ivan Sechin, Andrei Zotov, “Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices”, J. Math. Phys., 57:5 (2016), 53505 , 14 pp., arXiv: 1511.08761 (cited: 2) (cited: 2) |
31. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Геометрия расслоений Хиггса над эллиптическими кривыми, связанная с автоморфизмами простых алгебр Ли, системы Калоджеро–Мозера и уравнения Книжника–Замолодчикова–Бернара”, ТМФ, 188:2 (2016), 185–222 , arXiv: 1507.04265 ; A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations”, Theoret. and Math. Phys., 188:2 (2016), 1121–1154 , arXiv: 1507.04265 |
32. |
Andrey Levin, Mikhail Olshanetsky, Andrei Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A, 49:39 (2016), 395202 , 26 pp., arXiv: 1603.06101 (cited: 7) (cited: 8) |
33. |
А. В. Зотов, “Старшие аналоги условия унитарности для квантовых $R$-матриц”, ТМФ, 189:2 (2016), 176–185 , arXiv: 1511.02468 (цит.: 7) (цит.: 6) ; A. V. Zotov, “Higher-order analogues of the unitarity condition for quantum $R$-matrices”, Theoret. and Math. Phys., 189:2 (2016), 1554–1562 (cited: 6) (cited: 5) |
|
2015 |
34. |
G. Aminov, H. W. Braden, A. Mironov, A. Morozov, A. Zotov, “Seiberg-Witten curves and double-elliptic integrable systems”, J. High Energy Phys., 2015, no. 1, 033 , 15 pp., arXiv: 1410.0698 (cited: 4) (cited: 11) (cited: 4) (cited: 9) |
35. |
G. Aminov, A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations”, Письма в ЖЭТФ, 101:9 (2015), 723–729 ; G. Aminov, A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations”, JETP Letters, 101:9 (2015), 648–655 |
36. |
A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 , arXiv: 1212.5813 (cited: 2) (cited: 7) (cited: 3) |
37. |
Zengo Tsuboi, Anton Zabrodin, Andrei Zotov, “Supersymmetric quantum spin chains and classical integrable systems”, J. High Energy Phys., 2015, no. 5, 086 , 43 pp., arXiv: 1412.2586 (cited: 2) (cited: 14) (cited: 1) (cited: 12) |
38. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Квантовые $R$-матрицы Бакстера–Белавина и многомерные пары Лакса для уравнения Пенлеве VI”, ТМФ, 184:1 (2015), 41–56 (цит.: 14) (цит.: 13) (цит.: 2); A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI”, Theoret. and Math. Phys., 184:1 (2015), 924–939 , arXiv: 1501.07351 (cited: 13) (cited: 3) (cited: 13) |
|
2014 |
39. |
A. Gorsky, A. Zabrodin, A. Zotov, “Spectrum of quantum transfer matrices via classical many-body systems”, J. High Energy Phys., 2014, no. 1, 070 , 28 pp., arXiv: 1310.6958 (cited: 28) (cited: 23) |
40. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Классификация изомонодромных задач на эллиптических кривых”, УМН, 69:1(415) (2014), 39–124 (цит.: 12) (цит.: 12) (цит.: 2); A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118 , arXiv: 1311.4498 (cited: 12) (cited: 6) (cited: 9) |
41. |
G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207 , 19 pp., arXiv: 1402.3189 (cited: 14) (cited: 5) (cited: 14) |
42. |
A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, J. High Energy Phys., 2014, no. 7, 012 , arXiv: 1405.7523 (cited: 20) (cited: 7) (cited: 22) |
43. |
A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and soliton equations related to eleven-vertex $R$-matrix”, Nuclear Physics B, 887 (2014), 400–422 , arXiv: 1406.2995 (cited: 15) (cited: 5) (cited: 13) |
44. |
A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 2014, no. 10, 109 , 29 pp., arXiv: 1408.6246v2 (cited: 20) (cited: 16) |
|
2013 |
45. |
A. D. Mironov, A. Yu. Morozov, Y. Zenkevich, A. V. Zotov, “Spectral duality in integrable systems from AGT conjecture”, Письма в ЖЭТФ, 97:1 (2013), 49–55 , arXiv: 1204.0913 (цит.: 50) (цит.: 50) (цит.: 3); JETP Letters, 97:1 (2013), 45–51 (cited: 50) (cited: 28) (cited: 47) |
46. |
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, “Spectral duality between Heisenberg chain and Gaudin model”, Lett. Math. Phys., 103:3 (2013), 299–329 , arXiv: 1206.6349 (cited: 54) (cited: 26) (cited: 50) |
47. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb C)$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201 , 25 pp., arXiv: 1208.5750 (cited: 16) (cited: 17) |
48. |
А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 (цит.: 19) (цит.: 18) (цит.: 3); A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338 (cited: 18) (cited: 9) (cited: 19) |
49. |
G. Aminov, A. Mironov, A. Morozov, A. Zotov, “Three-particle integrable systems with elliptic dependence on momenta and theta function identities”, Phys. Lett. B, 726:4-5 (2013), 802–808 , arXiv: 1307.1465 (cited: 12) (cited: 6) (cited: 12) (cited: 12) |
50. |
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, “Spectral dualities in XXZ spin chains and five dimensional gauge theories”, J. High Energy Phys., 2013, no. 12, 034 , 11 pp., arXiv: 1307.1502 (cited: 24) (cited: 27) |
|
2012 |
51. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes and Hitchin systems. General construction”, Comm. Math. Phys., 316:1 (2012), 1–44 , arXiv: 1006.0702 (cited: 2) (cited: 14) (cited: 9) (cited: 15) |
52. |
A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence for Painlevé VI”, J. Math. Phys., 53:7 (2012), 073508 , 19 pp., arXiv: 1107.5672 (cited: 23) (cited: 20) |
53. |
A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507 , 19 pp., arXiv: 1107.5672 (cited: 30) (cited: 26) |
54. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Calogero-Moser systems for simple Lie groups and characteristic classes of bundles”, J. Geom. Phys., 62:8 (2012), 1810–1850 , arXiv: 1007.4127 (cited: 18) (cited: 10) (cited: 18) |
55. |
Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095 , 37 pp., arXiv: 1207.4386 (cited: 9) (cited: 9) (cited: 9) |
|
2011 |
56. |
Andrei V. Zotov, “1+1 Gaudin Model”, SIGMA, 7 (2011), 067 , 26 pp., arXiv: 1012.1072 (cited: 8) (cited: 8) (cited: 10) |
|